Document Type : Original Research Paper
Authors
Computer Engineering Department, Faculty of Engineering, University of Bojnord, Bojnord, Iran.
Abstract
Background and Objectives: In this paper, a novel and efficient unsupervised machine learning algorithm named EiForestASD is proposed for distinguishing anomalies from normal data in data streams. The proposed algorithm leverages a forest of isolation trees to detect anomaly data instances.
Methods: The proposed method EiForestASD incorporates an isolation forest as an adaptable detector model that adjusts to new data over time. To handle concept drifts in the data stream, a window-based concept drift detection is employed that discards only those isolation trees that are incompatible with the new concept. The proposed method is implemented using the Python programming language and the Scikit-Multiflow library.
Results: Experimental evaluations were conducted on six real-world and two synthetic data streams. Results reveal that the proposed method EiForestASD reduces computation time by 19% and enhances anomaly detection rate by 9% compared to the baseline method iForestASD. These results highlight the efficacy and efficiency of the EiForestASD in the context of anomaly detection in data streams.
Conclusion: The EiForestASD method handles concept change using an intelligent strategy where only those trees from the detector model incompatible with the new concept are removed and reconstructed. This modification of the concept drift handling mechanism in the EiForestASD significantly reduces computation time and improves anomaly detection accuracy.
Keywords
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article