Document Type : Original Research Paper

Authors

1 Department of Electrical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran.

2 Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract

Background and Objectives: Beside acceptable performance, power consumption and chip area are important issues in embedded systems that should be taken into consideration.
Methods: In this paper, a novel continuous-time 1-1 MASH ∆∑ Time-to-digital converter (TDC) is presented. Since the proposed design utilizes 12-bit quantizer based on Gated Switched-Ring Oscillator (GSRO) for both stages, it has been implemented all-digitally. By using a novel structure, only one multi-bit counter is employed for both stages, therefore the required hardware for implementation of this work is much less than conventional TDCs. As a result, complexity, chip area and power consumption would decrease considerably.
Results: We implemented the proposed design prototype on an Altera Stratix IV FPGA board. Measured results demonstrate that although this work uses less complex architecture in comparison with previous works, it provides appropriate performance such as 60.7 dB SNR within 8 MHz signal bandwidth at 400 MHz sampling rate while consuming 2.79 mW.
Conclusion: Experimental results reveals suitability of the proposed TDC to be incorporated in fast and accurate applications such as ADPLLs and high-resolution photoacoustic tomography. Also, by adjusting the proposed novel structure with more stages higher order of noise-shaping can be attained to enhance SNR and time-resolution further.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image