Document Type : Original Research Paper

Authors

Department of Electrical Engineering, Arak University of Technology (AUT), Arak, Iran.

Abstract

Background and Objectives: Permanent magnet synchronous motors (PMSM) have received much attention due to their high torque as well as low noise values. However, several PI blocks are needed for field, torque, and speed control of the PMSM which complicates controller design in the vector control approach. To cope with these issues, a novel analytical approach for time-response shaping of the Pi controller in the filed oriented control (FOC) of the PMSM is presented in this manuscript. In the proposed method, it is possible to design the controlling loops based on the pre-defined dynamic responses of the motor speed and currents in dq axis. It should be noted that as decoupled model of the motor is employed in the controller development, a closed loop system has a linear model and hence, designed PI controllers are able to stabilize the PMSM in a wide range of operation.
Methods: To design the controllers and choose PI gains, characteristic of the closed loop response is formulated analytically. According to pre-defined dynamic responses of the motor speed and currents in dq-axis e.g., desired maximum overshoot and rise-time values, gains of the controllers are calculated analytically. As extracted equation set of the controller tuning includes a nonlinear term, the Newton-Raphson numerical approach is employed for calculation of the nonlinear equation set. In addition, designed system is evaluated under different tests, such as step changes of the references. Finally, it should be noted that as the decoupled models are employed for the PMSM system, hence exact closed loop behavior of the closed loop system can be expressed via a linear model. As a result, stability of the proposed approach can be guaranteed in the whole operational range of the system.
Results: Controlling loops of the closed loop system are designed for speed control of the PMSM. To evaluate accuracy and effectiveness of the controllers, it has been simulated using MATLAB/Simulink software. Moreover, the TMS320F28335 digital signal processor (DSP) from Texas Instruments is used for experimental investigation of the controllers.
Conclusion: Considering the simulation and practical results, it is shown that the proposed analytical approach is able to select the controlling gains with negligible error. It has shown that the proposed approach for rise time and overshoot calculations has at most 0.01% for step response of the motor speed at 500 rpm.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image